

Final Year Project

Final Report

Project Title: ClickNWin

Student: Geoffrey Atkinson

Student Number: C00184861

Project Supervisor: Greg Doyle

Date: 05/04/2017

2

Abstract

The purpose of this report is to give a detailed description of the work that went into completing

the ClickNWin project. The document will outline the work that was done, the project’s

functionality and descriptions of the various obstacles and challenges that were overcome in

the making of the application. The document will also explore what could have been done

differently to achieve the goal and the work that did not make it into this version of the

application. Advice to future participants in the project will be given and a detail of the learning

that was achieve during the work will be described

3

Table of Contents
Abstract .. 2

1.0 Introduction .. 5

2.0 Project Idea .. 5

3.0 Iteration Descriptions ... 6

3.1 Iteration One .. 6

3.2 Iteration Two .. 7

3.3 Iteration Three .. 9

4.0 Challenges Encountered... 10

4.1 PayPal Issues .. 10

4.2 Encryption .. 11

4.3 Balance Redemption .. 12

5.0 Future Features... 12

5.1 Mobile Version .. 12

5.2 New Games .. 16

6.0 Project Changes ... 16

6.1 Technology Change ... 16

6.2 PayPal Website Feature ... 17

6.3 Database Changes .. 19

6.4 New Admin Functionality.. 20

7.0 Module Descriptions .. 20

7.1 Views ... 20

7.2 Admin .. 20

7.3 API ... 21

7.4 Database ... 21

7.5 Encrypt ... 21

7.6 Utils .. 21

7.7 PayPalAPI .. 22

8.0 Testing.. 22

9.0 Project Advice .. 23

9.1 Make Changes .. 23

9.2 Listen to Feedback ... 24

9.3 Documentation ... 24

10.0 Learning Achievements ... 25

10.1 Technical Achievements .. 25

4

10.2 Personal Achievements .. 26

Acknowledgements .. 26

References .. 27

5

1.0 Introduction

This report is the final document for the ClickNWin project which is a web application to be

used for the sale of electronic scratch cards. This report will detail the work that was done to

complete the project and the challenges that were overcome during the project’s development.

There were features that were considered for the project but did not make the final

implementation due to time and other constraints so a detail of these features will be provided

so that they can be examined for consideration in a future implementation. As the project

progressed, ideas that were had during the initial phase had to be modified due to more

information being discovered or design decisions being made so a summary of the project

changes will be given which will be followed by a description of the different Python modules

that were used in the finished product. Finally, there will be a description of the testing

performed on the application, what would be done differently if restarting the project from

scratch, and a summary of the learning that was achieved throughout the course of the work

2.0 Project Idea

The initial idea that began the ClickNWin project was to create an online seller of electronic

scratch cards. The application should allow users to store their details on the site, make

payments to increase their balance and then use the balance to buy scratch cards for themselves

or for friends or family who are also registered with the site. The purchased cards could then

be redeemed to see if a prize was won and if it was, they would then be able to redeem the prize

back to their balance. This balance could then be used to purchase more cards or be paid to the

user’s accounts. To facilitate this, basic login and registration functions were required as well

as the ability to store user payment details on the site. As the site was dealing with personal

user data as well as sensitive credit card information, the site should be highly secure and make

use of encryption techniques to store all data. This was achieved by using HTTPS to secure

all transmissions between the client and the server. The contents of the ClickNWin database

were also encrypted using AES 128 which uses a 128 bit encryption key. If malicious attackers

were to compromise ClickNWin’s database, they would still not be able to use the information

without decrypting it first. It is estimated that it would take 3.4e + 38 years to successfully

brute force attack AES 128. It was also necessary to use PayPal in the site as their API for

6

making and receiving payments was a crucial piece in allowing users to top up their site balance

as well as receive payments when they wished to redeem their balance.

The web application will also allow administrators to perform some basic tasks within the

application. They will be able to add new administrators, add new scratch card games to the

database and modify the ones that are already there. This will allow the prices, prizes and

winning chances to be easily controllable by the admin staff of ClickNWin.

3.0 Iteration Descriptions

3.1 Iteration One

The initial iteration of the project began in October 2016. The idea was then expanded through

discussion and critical thinking. Work began by researching the various technologies and

techniques that would be required to build the application. The different choices that could be

made were weighed up and compared against each other. The initial choice for the project’s

main technology was C# and the ASP.Net MVC framework. These would be supplemented

with the usual web technologies of HTML, CSS and JavaScript.

However, while still early in the project, before any work had been started, the decision was

made to switch to the Python language and use the Flask framework. Research that had been

conducted concluded that Python and Flask would be more suited to the project due to Python’s

efficient handling of data and the free hosting cloud provider PythonAnywhere where a python

application could be hosted for free. Most of the rest of the iteration was spent on the design

of the application. A functional specification was drawn up to define what the application

should do and for whom. A design document was then created to model the various

components of the application, how they fit together and how they could be interacted with.

In the final two weeks of the iteration, work began on building the first screens for the site so

they could be prototyped at a project presentation to receive feedback and gain some insight

into how the project would proceed. The basic screens for the homepage, login and registration

were built and some basic routing with Python was done to allow switching between them.

7

Overall, the iteration was quite successful as a deeper understanding of the project requirements

was gained and the initial designs were done and ready. This meant that the next two iterations

could focus solely on the building of the application.

Fig 1. Initial homepage design for ClickNWin

3.2 Iteration Two

Iteration two began in January 2017. With the application’s design now confirmed, work began

on the basic functionalities that would be required. Login and registration facilities were the

first to be added. To allow for the correct use of these functionalities, the application’s database

was also built. The database was built in MySQL using the MySQL Workbench GUI.

Once registration and login were complete, work progressed to the core functions of the

application. A form for adding payment cards to the user account was added. Following this,

the functionality for topping up the user’s account balance was created. At this time, the only

option for a user to top up their balance was to use a stored credit card which was sent in an

Application Programming Interface (API) call to PayPal. Functionality for buying the scratch

cards was then added with the scratch cards being created and stored immediately after

8

creation. The algorithm to decide if the cards have a prize or not runs during the card’s creation,

so whether a prize was won or not is decided immediately although the user will not know until

they redeem the card. This was the project’s major algorithm so a large portion of time was

spent on testing it after the implementation to ensure it worked correctly and would output

some winners of various prizes while most cards would be losers.

The main core piece for displaying and redeeming the scratch cards could now start. A data

table with a list of all the user’s unredeemed cards could be visited and the user could then pick

one of their cards. The card was then displayed on the screen with six panels on it. As each

panel was clicked, it would disappear and a prize amount displayed. If the user matched three

prize amounts on a card, they would win that amount. The winning amount would then be

added to the user’s balance. The final function for iteration two was then added which was to

allow users to redeem their balance back to their bank account. This was achieved by taking

an email address for the user which was linked to a PayPal account. A call to the PayPal API

was made which passed over the email and amount and the payment could be made.

There was another feedback session at the end of iteration two where the focus was the

restriction imposed on users that they must use the applications functionality for storing credit

cards if they wished to use the site. This was cited as an application drawback which could

alienate some users. The feedback from this session was taken on board for evaluation and

implementation in iteration three.

9

Fig 2. Display of a user’s current cards

3.3 Iteration Three

Iteration three began in March 2017. The focus for this iteration was to implement features

suggested by the previous feedback session and to clean up and refactor the code base in

preparation for the final release. The first implemented feature was to encrypt all data being

stored in the MySQL database. While this had been identified as a key feature from the start,

it had not yet been implemented. Following this, work began on allowing users to top up their

balance using their PayPal account instead of having to store their credit card details with

ClickNWin. This was achieved with a PayPal API call which returned a URL to the PayPal

website which the user could be redirected to and would then send the user back to ClickNWin

after the payment was confirmed.

Following this, it was decided to prioritise the remaining work and the final piece of

functionality that was worked on was an administrator back end. This added the functionality

for admins to be able to add new admins to the system, create new scratch card games and

modify the existing ones. When an admin is creating the games or modifying them, both the

10

prizes and the chances for winning those prizes can be changed as well as the price of the cards.

This was the final piece of functionality added to the project. Once this was complete, the code

was thoroughly read through and refactored and commented where necessary. A final

deployment was then done to PythonAnywhere and the application was tested.

Fig 3. Admin page for modifying an existing game.

4.0 Challenges Encountered

4.1 PayPal Issues

One of the initial issues that was encountered in the project was during the initial

implementations of the PayPal API. The PayPal sandbox website which was used for setting

up test accounts and generating credentials for the different applications that were using PayPal

to process their payments is difficult to get transaction errors from. During the initial testing

of the API call to receive payments from user credit cards, the payments were not being

successfully created. The PayPal websites transaction tracker showed that the payments were

11

an error but it was difficult to pinpoint the reason. The only hint at the error was in a log on

the website where a reference to the card’s type could be seen. After experimenting with the

input into the JSON that was sent with the API call, it was discovered that the credit card type

i.e. Visa, MasterCard, had to be sent in all lowercase letters whereas the ClickNWin database

had the type of card stored with the first letter capitalised. The problem was overcome by

formatting the credit card type values before they were stored to ensure it was in all lower case.

The issue was not immediately resolved as the API call still did not work with the PayPal

transaction logs now pointing to the entered top up amount as a problem but still not giving a

reason. More input experimentation was required before it was discovered that the API cannot

handle floating point numbers that start with the decimal point. They require a leading zero.

It was also discovered that there must be exactly two numbers after the decimal point not one.

These problems were solved by creating the formatCurrency function that resides in the utils.py

file. This function was called on all currency amounts sent to the API to ensure they were

properly formatted before being sent to PayPal.

4.2 Encryption

The second issue that arose was due to a choice made earlier in the project. It was in relation

to the encryption of the database contents. Earlier in the project, it was decided that the

encryption would not be implemented at the start of the project as it aided the testing of the

application to clearly see the values that were being stored in the database. It was mistakenly

believed that it would be a simple matter to plug the encryption and decryption into the database

functions and that nothing would change except for the values being stored in the database.

However, towards the end of iteration three, when work began on implementing the encryption,

it was realised that this was not the case. As the AES encryption algorithm that was being used

from the pycrypto library could not encrypt values that were not strings, the database structures

had to change to accommodate this. With the values that came back from the database now

being different, pre-processing had to be added to some database functions to convert the values

to how they were expected in other modules so as more work did not have to take place in these

modules to facilitate the change in data type.

12

4.3 Balance Redemption

Another issue encountered towards the end of the project was when users were redeeming their

balance they could go to the redeem balance page and redeem some funds back to their account,

use the browser’s back button to go back to the page and then redeem more than they had in

their balance. This was due to the client side validation using the amount for the clients balance

from their balance amount in the top navigation bar which would be cached when the page

reloaded and still show the amount from before the previous redemption. This was a potentially

serious issue as the application could have been defrauded and lost a lot of money due to this

bug. To prevent this, server side validation for the amount users had in their balance was added

to work alongside the client side validation so if one was bypassed the other could still pick up

the issue. If the client side validation failed, due to the cached value, the server would pull a

fresh copy of the user’s balance and compare it to the amount sent for redemption. If the

amount sent was greater than the value pulled from the database, an error message would be

sent to the user and the transaction cancelled.

5.0 Future Features

During the work on ClickNWin, there were some features that did not make this version of the

application due to time constraints. These features will be detailed here to help provide a

priority list for the next implementation of the application. These features should be the focus

of future iterations.

5.1 Mobile Version

A major feature not implemented in ClickNWin was a mobile version of the application. Time

constraints did not allow this feature to be added during the three iterations of the project.

Initial research suggests that it may not be too difficult to use a WebView class in Android to

display the application as if it was a native mobile app while it would actually be displaying

the web application without a browser around it [1]. However, as ClickNWin was not designed

with mobile in mind, and therefore does not have a responsive design, this could make the

pages that are displayed appear disjointed and possibly hinder the user experience. To counter

13

this issue, the front end of ClickNWin could be redesigned as a native mobile application and

use RESTful calls to the pre-existing Flask API to update the database and other processing.

This would eliminate the need for a full redesign but it is unclear yet whether this is possible

and would require more research. This should be considered the priority of any future iteration

of ClickNWin. While the market that can be reached by the web application is reasonable,

there is the potential to open up a much bigger user base if the application was ported to mobile

devices.

As part of the initial research, a working mobile version of ClickNWin, using the WebView

wrapper, was created. While this is not a finished product, it demonstrates the proof of concept

for creating a mobile version of ClickNWin. The mobile version could be fully launched by

either redesigning the web application UI to be more compatible with mobile or by designing

a native mobile front end that could potentially integrate with the Python back end. To

demonstrate the mobile version, some screenshots are included below.

14

Fig 4. ClickNWin mobile homepage

15

Fig 5. ClickNWin mobile login page

16

5.2 New Games

The second feature of ClickNWin that was not implemented but should be high on the priorities

list for another iteration is the ability to handle different types of games. In its current state,

ClickNWin has a basic game type that involves drawing the card with six panels on it and

getting the user to click them to make them disappear and trying to match three prize amounts.

While new games with different prizes can be added, the games will still be mostly similar and

could eventually become stale for the user. ClickNWin could be modified to add different

types of games, such as a crossword based game or even a lotto system with different numbers

at given points in the week. This would require new design work, possibly new database tables

and extra development which was not in the scope for the current version of ClickNWin but

could be considered for its future developers.

6.0 Project Changes

Over the course of the project changes had to be made to some aspects due to new

information, feedback or design choices. The major changes that were made will be listed

here to provide some insight into how the project could have turned out if these changes had

not been made. The changes that were made have been documented in the design and

functional specification documents to represent the new state of the project.

6.1 Technology Change

The first major change that was made to the project was mentioned previously. This was the

decision to switch the main server language and framework from C# and ASP.Net MVC to

Python and Flask. While ASP was not a bad choice for the development of ClickNWin, the

lack of free hosting options for C# projects compared against those available for Python

frameworks necessitated the move as the application needed to be easily hostable for the

purposes of the project. Python is also very good at working with data. During the project,

the various data structures that are available and the libraries that can be found for Python

17

were extremely useful for the project. One of the project’s major algorithms, cumulative

probability for deciding if cards were winners or not, originally had a C# implementation and

this was tested to ensure its accuracy. Included below are the results of a test run on the

corresponding Python algorithm for comparison purposes. The original results for the C#

version of this test are contained in the project’s research report. The algorithm was run 1000

times and the results compiled.

Prize Probability Expected Results Actual Results

1st 1% 10 9

2nd 5% 50 42

3rd 11% 110 115

4th 15% 150 150

Not a Winner 68% 680 684
Fig 4. Cumulative probability algorithm test results for Python

These results compare favourably with the implementation of the C# algorithm. There is

variation on the expected results which is not abnormal behaviour due to the random nature of

the algorithm but the actual results are not so distant to the expected results that the algorithm

could be considered unusable. The results that were seen in the C# test are quite like the ones

from this Python test. This was the project’s major algorithm and the favourable results show

that there was no negative impact on the project from the change in technologies.

6.2 PayPal Website Feature

During the second feedback session, the point was raised that ClickNWin was restricting its

users to topping up their account balance by storing their credit card details with the application

only. As previously mentioned, this could have the potential of alienating a portion of the user

base who may not feel comfortable with allowing a new and potentially untrusted application

to have access to their payment details. These users may prefer to use a more trusted and well

known method of payment such as PayPal. This had not been considered previously during

the design phase of ClickNWin but was a very valid point. Therefore, research went into how

to use the PayPal API to redirect users to the PayPal website to complete their payments to top

up their balance. It was discovered that the payments call used to make credit card transactions

18

could be modified to send two return URL’s and the payment amount to PayPal which would

then return a redirect URL that the user could be sent to where they could authorise the payment

and then be returned to ClickNWin [2]. Attached below is the page where the user confirms

their payment to ClickNWin. Selecting the confirm button will bring the user to a receipt page

back on ClickNWin with the payment details while selecting the cancel option brings the user

to ClickNWin’s home page.

Fig 5: PayPal payment confirm page

This was a good addition to the project as it helped ensure that users not comfortable with

storing their card details with the site now had a way to still use the site and not have to find an

alternative.

19

6.3 Database Changes

Over the course of the project, the database model that had been defined in the initial design

document had to be revised as new information was discovered or new ideas were generated.

While the database model did change drastically, there were some new fields added which had

not been anticipated during the initial design and were needed to bring the project to

completion. The changes made were adding the boughtOn field to the scratch cards to provide

better sorting of the cards when displayed and splitting the card holder name on payment cards

into the first and last names as this how PayPal requires it to be sent.

Below is a diagram of the completed database model which was used in the finished product.

All data types are strings of various lengths except for the id fields which are integers and the

redeemed variable on scratch cards which is a tiny integer. PK denotes the primary key for the

table and FK denotes a foreign key.

Fig 6. Final database model for ClickNWin

20

6.4 New Admin Functionality

The design document for this project described only one administrator functionality for the

application. This was the ability to modify the existing scratch card games. Towards the end

of iteration three, when this functionality was about to be implemented, it was decided to add

two additional administrator functions to make the administrator section less bare and provide

important functionalities for the project that could leave it lacking if they were left out. The

extra two functionalities were the ability to add new admins and the ability to add new scratch

card games. Allowing new games to be added meant that they would not have to be manually

added by allowing admins to modify the database and therefore a high degree of control over

the new games could be maintained by enforcing the values that could be put into the games

using form validation.

7.0 Module Descriptions

The following section will give a brief description of the functions for the different Python

modules that were created for ClickNWin.

7.1 Views

The views module provides the main routing and viewing for the application. All the main

pages for the application are rendered from this module. Most of the pre-processing for any

data that is being rendered on a page or being sent for storage is done in this module along with

database calls that are necessary to retrieve or insert the data. The Flask library is the main

dependency for this module.

7.2 Admin

The admin module is used for routing and viewing the pages that serve administrator

functionality. There is a decorator function which prevents non-logged in admins from

21

accessing the pages and there are database calls to retrieve and store the game data that admins

will be changing.

7.3 API

The API module contains routes for AJAX calls that are made from the client. There are several

functions here which can asynchronously retrieve and return data to the web pages. The most

important function can check if usernames already exist for the registration and card buying

forms.

7.4 Database

The database module contains all calls to the MySQL database. These can store, update and

retrieve data for the application. All database functions in this module use the encrypt module

to encrypt and decrypt the data that is flowing through them to keep the application database

secure. The connection data for the database is stored as a global variable within the module.

The module uses the DBcm library as a dependency.

7.5 Encrypt

The encrypt module uses the AES encryption algorithm to encrypt and decrypt all data that is

being stored or retrieved from the database. The secret key and initialisation vector that the

algorithm uses are stored as global variables in the file. This module uses the pycrypto Python

library as a dependency.

7.6 Utils

The utils module contains some useful utility functions. It was decided to separate these

functions from the other modules due to them not fitting the category for being in the other

22

modules. There are functions for creating new scratch cards, processing card payments and

formatting currency for the PayPal API.

7.7 PayPalAPI

The PayPal API module contains the functions that make calls to PayPal for credit card

payments, redirects to the PayPal website and pay outs when customers want to redeem their

balance. Much of each function is written in JSON which is then sent to PayPal for processing

with necessary variables plugged in when the calls are made to the PayPal module by the

application. There is a global variable which contains the client keys necessary to make the

calls. The module uses the Python library PayPalRestSDK as a dependency.

8.0 Testing

Early in the project, it was decided that automated testing would not be included in the scope

for this project. The main form of testing that has performed throughout the project is manual

testing. Testing was conducted constantly during the development process. As new features

and functions were added to the application, thorough testing was conducted to ensure that they

were as bug free as possible and were correctly performing the functionalities that were

required of them. The testing was performed by multiple users who came from both a technical

and non-technical background so that a wide variety of opinions could be sought and proper

feedback be gotten for the application.

Before the application moved onto the commercial market, it would be extremely beneficial to

put together a full testing group for the application to get feedback and insights into how it

would be perceived after release. This focus group would be made up of potential users of the

application and would involve them spending some time testing all functionalities of

ClickNWin and giving their feedback. This feedback could then be used to refine the

application before a full release.

23

9.0 Project Advice

With the project now complete, I can look back and critically analyse how I approached it and

the advice I might give to myself or someone else doing a similar project. While mistakes were

made throughout the work, each one of these is an important learning point that can be reflected

on and becomes important experience when doing future projects.

9.1 Make Changes

The technology change previously mentioned in this document was a modification that would

have had an impact on the outcome of the project. While the change was necessary to make

the project a success, I still regret not doing an in-depth project with C#, ASP and MVC. These

technologies are not only very interesting, they are also still very relevant. The current Tiobe

index ranks C# ahead of Python in its rating system with the two languages coming in at four

and five respectively [3]. Using these technologies would have required a much different

approach to the project as they have different ways of building web applications and handling

databases. It would have been a different kind of challenge to use these technologies in the

project and I believe I would be coming out at the end of the work with a very different skillset.

C# requires far more proficiency with classes and objects than Python and I would have had to

increase my knowledge of these programming concepts to make the project a success, had I

used these technologies. However, while I do have a sense of regret over the change, I am still

happy with the decision to change technologies. Python is still a highly relevant language and

I had some prior experience with C# with the possible opportunity for more within my working

environment in Unum. The chance to gain the knowledge to really go into detail in a new

language and produce a project of reasonable scope could not be turned down and I was happy

with my decision.

To anyone in a similar position, I would advise them to think hard about what they would want

to do with the project. The project’s entire design does not have to change in the last couple

of weeks but decisions made early in the project especially before any major coding has begun

can still be reversed and new opportunities explored and inserted into the project. I would

advise someone doing a project not to feel bound by design choices made in the first few weeks

or think that the original design and specifications for the project have to be rigidly conformed.

24

Some of the best ideas for the project will most likely occur while coding the application and

should be explored and experimented with if they can bring value to the application.

9.2 Listen to Feedback

At all stages of the project I received feedback from a variety of sources. My supervisor, the

other supervisors, classmates and even family and friends who I discussed the project with.

When building a widely accessible application like ClickNWin, feedback is an invaluable

source of ideas that can potentially be incorporated into the application. It can range from

simple features that can improve the user experience to unthought of issues that could pose

serious problems for your project. As previously mentioned, some important ideas for the

project came through discussions after I had explained the application at project demos or in

conversation. The idea to allow users to buy scratch cards for their friends was an idea that

came up through some initial discussions I had about the application. The potential issue that

could have arisen by forcing users to store their credit card details within the application was

raised at a project presentation and made me realise the importance of always trying to provide

the user with options rather than forcing them into what I though as the best solution.

Ideas for the project can come from a variety of sources so I would advise to always try discuss

the project with different people. Explain the idea, get opinions and see what people think.

The idea they have may not be something that can be put into your project at that time or it

could become the cornerstone of your application. Therefore, in the spirit of agile, it is always

important to seek and analyse feedback.

9.3 Documentation

When I began the project, there was a whirlwind few weeks of constant writing and research

for the documents but as soon as this was finished, I dived straight into the coding and only

looked back at documents to remind myself of some design or functionality. I never updated

them during this time with any new information I had discovered or the changes I made to my

design. It is key to keep the documentation of the project as up to date as possible at all stages

of the work. Whenever new ideas, functionalities or just a different way of creating an existing

25

functionality are being explored, always update the relevant documentation as this will save a

lot of time during the final weeks of the project when the focus should be on the final documents

and testing.

10.0 Learning Achievements

10.1 Technical Achievements

After completing this project, I feel I have gained a good knowledge and understanding of how

to define, design and build any kind of web application project in the future. I was able to use

the skills learned throughout my time on this software development course to create a fully

functional and well-designed piece of software that with the right funding could be put out to

the commercial market. While I was working with very specific technologies, Python and

Flask, most of the work that was done on this project is easily transferable to any other similar

project using any kind of web application framework. The thought processes for creating web

applications are fundamentally the same and the only major difference would be learning the

new language and framework. The experience with using the core web technologies of HTML,

CSS and JavaScript are also transferable to almost any web project and the new knowledge of

using AJAX I could put into practice in several places throughout this project is also an

extremely useful skill to have as AJAX is becoming a more common feature in modern web

applications [4].

While it is good to have the overall understanding of the application development process, I

was also very satisfied with the level of competency I gained in using Python and Flask. If I

moved onto to doing a project with a different language, there would almost certainly be a

learning curve for me at the start of the project. However, I think that if I was to begin a new

project using even a different Python framework, I would almost certainly be able to get going

a lot quicker and be far more comfortable with the work.

During the work, especially the coding work, I came across many small challenges which

would probably be trivial to an experienced developer but were new to me. These ranged from

small oversights in functions I was coding to larger errors like the previously mentioned error

around users being able to redeem more than they had in their balance. Making these kinds of

mistakes throughout the project has thought me some of the simple things to look for when

26

creating applications like ClickNWin. Small oversights, like not checking what happens when

a user clicks the back button, can quickly turn into application breaking bugs which could sink

a project very quickly. I am grateful that I have had the chance to make these mistakes now

and learn what to look for in the future as this will give me a good grounding for when I move

forward with new projects in the future.

10.2 Personal Achievements

Apart from the technical learning achieved throughout the project, I have also learned skills

that will be useful away from the software development process. The research process and

writing I had to use when undertaking this project is transferable across any number of

disciplines as is drafting of formal documents which has been used throughout this project.

My greatest learning throughout the process is the cultivation of the mental discipline and

strength that is required to complete a project like this. Much effort over a long period of time

must go into a project such as this one and it is very easy to lose motivation during the process.

I am happy with the way I approached the project and the work that was accomplished. I believe

that the discipline learned over the last six months of this project will stand to me in good stead

in any job or role I will have going forward.

Acknowledgements

First, I would like to thank my project supervisor, Greg Doyle, for his guidance and help

throughout the project. His inputs into my ideas and thoughts on how I should proceed with

the proceed with the project helped shape the outcome of my project.

I would also like the rest of the project supervisors. Their input during the presentations and

willingness to help whenever I had questions about my project after classes allowed me to form

new project ideas and make my final work far better.

Finally, I would like thank my classmates who were always on hand to help with questions or

problems and were always willing to drop their work for a few minutes to look at mine with

no complaint.

27

References

[1] – Chris Ching/Code with Chris. 2016. How To Make an App For Your Website In Less

Than 30 Minutes. [ONLINE]. Available at: http://codewithchris.com/make-an-app-from-

website/#webviewapp. [Accessed 29 March 2017].

[2] – Payments API. (No Date).[ONLINE]. Available at:

https://developer.paypal.com/docs/api/payments/. [Accessed 24 March 2017].

[3] – Tiobe. 2017. Tiobe Index March 2017. [ONLINE]. Available at:

https://www.tiobe.com/tiobe-index/. [Accessed 31 March 2017].

[4] – Jake Rocheleau/VanDelay Design. 2016. What Is Ajax & How Is It Used In Modern

Web Development? [ONLINE]. Available at: http://www.vandelaydesign.com/what-is-ajax-

webdev/. [Accessed 31 March 2017].

http://codewithchris.com/make-an-app-from-website/#webviewapp
http://codewithchris.com/make-an-app-from-website/#webviewapp
https://developer.paypal.com/docs/api/payments/
https://www.tiobe.com/tiobe-index/
http://www.vandelaydesign.com/what-is-ajax-webdev/
http://www.vandelaydesign.com/what-is-ajax-webdev/

